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ABSTRACT: Casini, Illari, Russo, and Williamson (2011) suggest to model mechanisms by means of recursive Bayesian 
networks (RBNs) and Clarke, Leuridan, and Williamson (2014) extend their modeling approach to mecha-
nisms featuring causal feedback. One of the main selling points of the RBN approach should be that it provides 
answers to questions concerning the effects of manipulation and control across the levels of a mechanism. In 
this paper I demonstrate that the method to compute the effects of interventions the authors mentioned en-
dorse leads to absurd results under the additional assumption of faithfulness, which can be expected to hold for 
many RBN models of mechanisms.
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RESUMEN: Casini, Illari, Russo y Williamson (2011) proponen modelar los mecanismos mediante redes bayesianas re-
cursivas (RBNs) y Clarke, Leuridan y Williamson (2014) extienden su enfoque sobre la modelización a meca-
nismos que presentan retroalimentación causal. Una de las ventajas principales del enfoque RBN debería ser 
que proporciona respuestas a cuestiones sobre los efectos de la manipulación y el control a lo largo de los niveles 
de un mecanismo. En este artículo muestro que el método para computar los efectos de las intervenciones que 
los autores mencionados defienden conduce a resultados absurdos bajo el supuesto tradicional de fidelidad, que 
cabe esperar que se mantenga en muchos modelos RBN de mecanismos.

Palabras clave: Redes bayesianas recursivas, mecanismo, modelización, intervención, manipulación, control.

1. Introduction

In many sciences questions of explanation, prediction, and control are regularly answered 
by pointing at the mechanism responsible for the phenomenon of interest. Such mecha-
nisms are typically characterized and described in a qualitative way. Glennan (1996, 52), for 
example, defines a mechanism underlying a behavior as “a complex system which produces 
that behavior by of the interaction of a number of parts according to direct causal laws”. 
For alternative prominent characterizations of mechanisms, see, for example, B echtel & 
Abrahamsen (2005, 423), and Machamer, Darden & Craver (2000, 3).

* This work was supported by Deutsche Forschungsgemeinschaft (DFG), research unit Causation | 
Laws | Dispositions | Explanation (FOR 1063). My thanks go to Gerhard Schurz for important dis-
cussions as well as to Alexander Christian, Christian J. Feldbacher, and two anonymous reviewers for 
helpful comments on an earlier version of the paper.
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Casini, Illari, Russo, and Williamson (2011) argue that recursive Bayesian networks 
(RBNs), which were originally developed by Williamson and Gabbay (2005) to model 
nested causal relationships, can also be used to model mechanisms and that RBN models 
of mechanisms provide quantitative answers to questions concerning explanation, predic-
tion, and control. In a follow-up paper Clarke, Leuridan, and Williamson (2014) extend the 
RBN approach in such a way that it can also be applied to mechanisms featuring causal feed-
back. One of the main selling points of the RBN approach should be that RBN models of 
mechanisms can be used to calculate post-intervention distributions, i.e., to predict the ef-
fects of interventions on a mechanism’s parts even across levels. There are basically two pos-
sibilities to model interventions in causal models: One either represents interventions by 
means of so-called intervention variables. Intervention variables are variables added to the 
model as new causes of the variables one wants to intervene on that satisfy certain additional 
constraints. (For details see, e.g., Spirtes, Glymour, & Scheines 2000, sec. 3.7.2; Woodward 
2003, sec. 3.1.3). Or one sets the variable one wants to intervene on to a certain value and 
deletes the causal arrows pointing at that variable (cf. Pearl 2009, sec. 1.3.1). Both represen-
tations can be used to compute post-intervention distributions. In (Gebharter 2014) I have 
argued that it is not possible to adequately represent interventions on a mechanism’s micro 
parts as intervention variables taking certain values in RBN models of mechanisms. In par-
ticular, it follows from the RBN framework that the macro variables of an RBN are always 
independent of intervention variables on micro variables. According to Casini et al. (2011), 
however, interventions on micro variables which lead to a difference at the macro level are 
representable as a special kind of arrow breaking interventions.12Casini et al. (2011, 12f) de-
scribe how post-intervention distributions in RBN models of mechanisms can be computed 
in that case. In this paper I show that representing interventions on a mechanism’s micro 
parts in RBN models of mechanisms as arrow breaking, as C asini et al. suggest, leads to ab-
surd consequences under the additional assumption of faithfulness (for details see sec. 4), 
which can be expected to hold for many RBN models of mechanisms.

The paper is structured as follows: In section 2, I introduce Bayesian networks, causal 
Bayesian networks, and the notation used throughout the paper. In section 3, I briefly 
present Casini et al.’s (2011) RBN approach for modeling mechanisms. I illustrate their 
approach by means of an abstract example, which I will also use later on in the paper. In 
section 4, I present the mentioned problems Casini et al.’s method for computing post-
intervention distributions has to face. I also discuss a possible solution and show that this 
solution leads straight into new and not less severe problems. I conclude in section 5.

2. Bayesian networks and causal Bayesian networks

A Bayesian network (BN) is a triple 〈V,E,P〉, where G = 〈V,E〉 is a directed acyclic graph 
(DAG) and P is a probability distribution over V. A graph G = 〈V,E〉 consists of a set 

1 Note that in ordinary causal models it does not matter which representation of interventions one 
chooses, since they both lead to the same consequences. Casini et al.’s (2011) arrow breaking interven-
tions, however, significantly differ from the ordinary and well-known standard arrow breaking inter-
ventions introduced by Pearl (2009). For details, see sec. 4.
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V of so-called vertices (which are random variables2 in case of a BN) and a binary rela-
tion E on V. In case of a directed graph, E is asymmetric. The elements of E are called the 
graph’s edges and are graphically represented by arrows. Hence, “X→Y” stands short for 
“〈X,Y〉 ∈ E”. A chain of arrows X—…—Y connecting X and Y is called a path between X 
and Y.3 A graph is acyclic if it does not feature a path of the form X→…→X.

In case of an edge X→Y, we call X the arrow’s tail and Y its head. The set of variables X 
with X→Y in a graph is called the set of Y’s parents Par(Y). A path of the form X→…→Y 
is called a directed path from X to Y. The set of all Y with X→…→Y is called the set of 
X’s descendants Des(X). For a triple 〈V,E,P〉 to be a BN it is required that it satisfies the 
Markov condition (MC) (cf. Spirtes et al. 2000, p. 11):

Definition 1 (Markov condition)
〈V,E,P〉 satisfies the Markov condition if and only if Indep(X,V\Des(X)|Par(X)) holds for 
all X ∈ V.4

If 〈V,E,P〉 satisfies MC, then its graph determines the following Markov factorization for P 
over V = {X1,…,Xn} (cf. Spirtes et al. 2000, 12):5

 P(x1, …, xn) = Πi P(xi|par(Xi)) (1)

The arrows and paths of a BN 〈V,E,P〉 can be causally interpreted. In that case, X is called a 
direct cause of Y (and Y a direct effect of X) w.r.t. variable set V if X→Y in G = 〈V,E〉. X is 
called a (direct or indirect) cause of Y (and Y an effect of X) if X→…→Y in G = 〈V,E〉. A vari-
able Z ≠ X,Y lying on a directed path X→…→Y is called an intermediate cause on this path. 
A variable Z on a path X←…←Z→…→Y is called a common cause of X and Y, provided no 
variable appears more often than once on the path X←…←Z→…→Y. Finally, a variable Z 
on a path X—…→Z←…—Y is called a collider on this path. If the form of such a collider 
path between X and Y is X→…→Z←…←Y, then Z is also a common effect of X and Y.

For causally interpreted BNs, MC becomes the causal Markov condition (CMC) (cf. 
Spirtes et al. 2000, 29):

Definition 2 (causal Markov condition)
〈V,E,P〉 satisfies the causal Markov condition if and only if every X ∈ V is probabilistically 
independent of all its non-effects conditional on its direct causes.

MC is equivalent with Pearl’s (2009, sec. 1.2.3) d-separation criterion (Lauritzen, 
Dawid, Larsen, & Leimer 1990). For this paper I use the following d-connection condi-

2 Capital letters “X1, …, Xn” etc. stand for random variables, while “x1, …, xn” stand for their respective 
values. “X1 = x1” means that X1 has taken value x1. Sometimes “x1” stands short for “X1 = x1”.

3 “X—Y” is a meta symbol for “X→Y or X←Y”.
4 Indep(X,Y|Z) stands for conditional probabilistic independence and is defined as P(x|y,z) = P(x|z) for 

all X-, Y-, and Z-values x, y, and z, respectively, given P(y,z) > 0.
5 “par(X)” stands for an instantiation of Par(X).
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tion (cf. Schurz & Gebharter 2016, sec. 2.3), which is also equivalent with the Markov 
condition:

Definition 3 (d-connection condition)
〈V,E,P〉 satisfies the d-connection condition if and only if the following holds for all 
X,Y ∈ V and for all Z ⊆ V\{X,Y}: If X and Y are probabilistically dependent conditional on 
Z, then X and Y are d-connected given Z.

Definition 4 (d-connection/d-separation)
X and Y are d-connected given Z if and only if there is a path π connecting X and Y such 
that no U with →U→ or ←U→ as part of π is in Z, while every collider on π is in Z or has 
a descendant in Z.

X and Y are d separated by Z if and only if they are not d connected given Z.
The equivalence between MC and the d-connection condition reveals the full content of 
CMC: If a causal model satisfies CMC, then every (conditional) probabilistic dependence 
is produced or can be explained by some causal connection (or d-connection) in the model. 
And vice versa: If there is no causal connection between two variables (i.e., the variables are 
d-separated by a set Z), then they are independent conditional on Z.

3. The RBN approach for modeling mechanisms

Let me now briefly present Casini et al.’s (2011) RBN approach for modeling mechanisms, 
which Clarke et al. (2014) also endorse. I start with the notion of a recursive Bayesian network 
(RBN). An RBN is a BN 〈V,E,P〉 with some X ∈ V such that the values of these variables X are 
BNs themselves. A variable whose values are BNs is called a network variable. A variable whose 
values are not BNs is called a simple variable. The set of a variable Y’s direct superiors DSup(Y) 
is defined as the set of network variables X in the RBN whose values’ (which are BNs) variable 
sets contain Y as an element. Y’s superiors Sup(Y) are defined as the transitive closure of the di-
rect superiority relation DSup(Y). The set of a variable X’s direct inferiors DInf(X) is the set of 
all variables Y which are vertices of the BNs which are X’s values. X’s inferiors Inf(X) are, again, 
defined as the transitive closure of the direct inferiority relation DInf(X).

Let me illustrate the introduced RBN notation by means of the following abstract ex-
ample: Assume we are interested in a mechanism and how this mechanism is connected to 
a certain input and output. We represent the input as a variable I and the output as O. The 
possible states of the mechanism are modeled as the possible values of a network variable 
N. Then the RBN’s (causal) structure will be I→N→O. Each value n of N is a BN describ-
ing one of the possible states of the mechanism. Let us further assume that the causal micro 
structure of the mechanism modeled is A→B→C←D for all of its possible states and that 
only the probability distribution over {A,B,C,D} changes from state to state.6

6 This is an assumption that will hold for many mechanisms. Examples may be all kinds of artificial devices 
such as radios, computers, and TVs. The assumption makes the presentation of the RBN approach and 
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Now the mechanism could be represented by the RBN depicted in fig. 1:

Fig. 1

The BN with graph I→N→O describes the system’s top (or macro) level. The BNs with 
graphs A→B→C←D (which are the possible values of N) describe possible states of the 
mechanism represented by network variable N. Dashed arrows indicate relationships of direct 
superiority and inferiority. N, for example, is a direct superior of A, B, C, and D, while A, B, C, 
and D are direct inferiors of N. Casini et al. (2011, sec. 4) suggest to interpret the continuous 
arrows as representing intra-level causal relations and to interpret the dashed arrows as repre-
senting inter-level constitutive relevance relations in the sense of Craver (2007a; 2007b).

Now RBNs should allow for inter-level explanation, prediction, and for answering 
questions concerning the effects of manipulation and control across the levels of a mech-
anism. What one ultimately wants for this purpose is a probability distribution P over 
the set of all the variables V = {I,N,O,A,B,C,D}. So we need to compute such a probabil-
ity distribution P on the basis of what we have, i.e., on the basis of the BN with structure 
I→N→O and the BNs (which are the possible values of N) with structure A→B→C←D. 
For this purpose, Casini et al. (2011, p. 11) assume the following modeling assumption, 
which they call the recursive causal Markov condition (RCMC):

Definition 5 (recursive causal Markov condition)
〈V,E,P〉 satisfies the recursive causal Markov condition if and only if Indep(X,NID(X)| 
DSup(X) ∪ Par(X)) holds for all X ∈ V.

NID(X) is defined as the set of all Y ∈ V that are neither inferiors nor descendants of X. 
V = {X1, …, Xm} is the set V of the RBN under the transitive closure of the inferiority re-
lation. Let N = {Xjl,…,Xjk} be the set of all network variables in V. For every instantiation 

the presentation of its problems much simpler and easier accessible, but nothing I do in the paper hinges 
on it. Note that all of Casini et al.’s (2011) examples feature causal micro structures with slightly different 
causal structures. However, their causal micro structures always represent either active or inactive states 
of the mechanisms represented by the corresponding network variables, meaning that they only differ in 
so far as the BNs representing active states feature arrows X→Y which are missing in the BNs represent-
ing inactive states. Adding these arrows to the inactive BNs does no harm. Since X and Y are connected 
by an arrow in some of the BNs, they will also be connected by an arrow in the BN over the set V of all 
variables at any level which is used for computing post-intervention distributions. (For details, see below.) 
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n = xjl,…,xjk of N one can construct a new BN: the flattening of the RBN w.r.t. n (“n↓” for 
short). The variables of such a flattening n↓ are the simple variables in V together with the 
instantiations of the network variables Xjl, …, Xjk in N to their values xjl,…,xjk in n. There is 
a directed edge X→Y in the flattening’s structure if there is an edge in the RBN’s top level 
graph or in one of the BNs which are values of one of the network variables in N. There is a 
directed edge X-->Y in n↓ if X is a direct superior of Y in the RBN. (There is no difference 
in probabilistic behavior of continuous and dashed edges; the only difference is the inter-
pretation mentioned above: Continuous arrows represent intra-level causal relations and 
dashed arrows represent inter-level relationships of constitutive relevance.) The following 
figure shows a flattening of the RBN whose graph is depicted in fig. 1 w.r.t. N’s value n1:

Fig. 2

The probability distribution of a flattening n↓ can be computed as follows (where Xjl are 
the direct superiors of Xi):

 P(xi|par(Xi),dsup(Xi)) = Pxjl(par(Xi)) (2)

Now we can compute the much sought after distribution P over V = {X1,…,Xm} on the ba-
sis of the flattenings n↓ as follows (where the probabilities P(xi|par(Xi),dsup(Xi)) on the 
right hand side of the “=” are determined by the flattening induced by x1,…,xm):

 P(x1,…,xm) = Πi P(xi|par(Xi),dsup(Xi)) (3)

Since P over V factors as described in equation (3), we can construct a new BN 〈V,E,P〉 
with the graph G = 〈V,E〉 depicted in fig. 1. Again, the continuous arrows can be inter-
preted as representing intra-level direct causal relationships, while the dashed arrows can 
be interpreted as inter-level relationships of constitutive relevance in the sense of Craver 
(2007a; 2007b). BN 〈V,E,P〉 should now provide answers to questions concerning expla-
nation and prediction as well as to questions concerning manipulation and control across 
the levels of the represented mechanism.

4. Troubles with interventions and RBNs

In causal models an intervention on a variable X is often represented as an arrow breaking 
intervention. Following Pearl (2009, sec. 1.3.1) we write “do(x)” for setting X’s value to x 
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by means of an intervention. To compute post-intervention distributions P(y|do(x)), one 
deletes all the arrows in the model pointing at X and uses probabilistic independence infor-
mation provided by CMC (or the d-separation criterion) and the resulting graph. (For de-
tails, see Pearl 1995; 2009, sec. 1.3.1.) Now Casini et al. (2011) adapt this method for their 
RBN models of mechanisms. I reconstruct their method of how to compute post-inter-
vention distributions P(y|do(x)) on the basis of what they do in (Casini et al. 2011) as fol-
lows (cf. Casini et al. 2011, pp. 12f). Step 1: Delete all the arrows in the BN over V whose 
head is X and whose tail is not a network variable. Step 2: Identify P(y|do(x)) with the con-
ditional probability P(y|x) computed by means of the independencies implied by RCMC 
and the structure of the graph resulting from step 1. Note that Casini et al.’s interventions 
—contrary to Pearl’s—do not break all arrows pointing at the intervened on variables. 
They only break same-level causal arrows, while leaving inter-level constitutive relevance 
arrows intact. The main motivation for not breaking dashed inter-level arrows is that inter-
vening on a micro variable should break the influence of its causes (at the same level), while 
it should still have an influence on the corresponding network variable (its direct superior) 
as well as on effects of this network variable at the macro level. In other words: Manipulat-
ing the lower level of a mechanism should, since the lower level constitutes the higher level, 
at least sometimes lead to a difference in the mechanism’s macro behavior.

Let me briefly illustrate this by means of the exemplary RBN introduced in sec. 2. As-
sume we want to compute P(o|do(b)) for certain O- and B- values o and b, respectively. Ac-
cording to step 1, we delete A→B and arrive at the structure depicted in fig. 3:

Fig. 3

According to step 2, P(o|do(b)) should be identified with P(o|b) in the truncated graph, 
and since P(o|b) = P(o,b)/P(b), we can compute P(o|do(b)) by computing P(o,b) and 
P(b) with help of the independencies implied by RCMC and the graph depicted in fig. 3 as 
follows:

 P(o,b) = Σi P(ni,o,b) = Σi P(o|ni) × P(b|ni) × P(ni) (4)

 P(b) = Σi P(ni,b) = Σi P(b|ni) × P(ni) (5)

So far, so good. Now note that as long as the parameters of a BN are not fine tuned in 
a certain way, there will be a (conditional) dependence for every d-connection (cf. Schurz 
& Gebharter 2016, sec. 3.2). This means that most BNs will satisfy the converse of the d-
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connection condition, i.e., they will be faithful (cf. Zhang & Spirtes 2008, p. 247; Spirtes et 
al. 2000, sec. 2.3.3). Let us assume that there are at least some mechanisms whose BNs over 
V are faithful. In that case A and B are d-connected over path A<--N-->B in the graph in 
fig. 3, and thus, A and B will be dependent when forcing B to take some value b by means of 
an intervention do(b). But this means that the RBN approach implies that intervening on 
the effect B sometimes leads to a change in A’s probability, though A is a cause and not an 
effect of B. Note that because there is also a path d-connecting D and B, viz. D<--N-->B, 
there will also be a B-value b such that do(b) does have an influence on the causally inde-
pendent variable D. In addition, there is also a path d-connecting I and B, viz. I→N-->B. 
Thus, intervening on B will at least sometimes have an influence on the mechanism’s macro 
input I. All of these consequences are certainly not intended by Casini et al. (2011).

We can generalize these findings as follows: The RBN approach leads to the absurd 
consequence (for faithful mechanisms) that some interventions on the effect of a micro 
variable will have an influence on that micro variable’s non-effects (including its causes 
as well as the macro inputs of the mechanism represented by the corresponding network 
variable). This is definitely a consequence supporters of the RBN approach would like to 
avoid. It contradicts everything we believe to know about causation and totally blurs the 
distinction between observation and manipulation (cf. Pearl 2009, p. 23). It also contra-
dicts scientific practice, since it would render any attempt to distinguish causes from effects 
by means of randomized experiments hopeless. We have to conclude that Casini et al.’s 
(2011) method for computing post-intervention distributions (at least in its present form) 
cannot give them what they want.

Here is what a supporter of the RBN approach may answer to the problems described 
above: In step 1 of the method for computing post-intervention probabilities P(y|do(x)) 
in an RBN model of a mechanism we do not only have to delete all the arrows whose heads 
are X and whose tails are non-network variables. We also have to delete every dashed arrow 
whose tail is a direct superior of X and whose head is a non-effect of X; and, in addition, we 
also have to delete all continuous arrows whose heads are superiors of X.7 According to this 
modified computation method, we would have to delete A→B, I→N, N-->A, and N-->D 
from our original BN in fig. 1. We would, thus, arrive at the structure depicted in fig. 4:

Fig. 4

7 Note that supporters of the RBN approach cannot just simply suggest that all (i.e., continuous as well 
as dashed) arrows into B should be broken when intervening on B. The reason is that dashed arrows 
are required to allow for inter-level prediction. Without them, probabilistic influence induced by in-
tervening on B could not be propagated to the variables describing the mechanism’s top level.
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Now the problems described above disappear. Since A and B are d-separated, there is no 
B-value b such that A depends on do(b). Since D and B are d-separated, there is no B-value 
b such that D depends on do(b). And, finally, since I and B are d-separated, there is no B-
value b such that I depends on do(b).

However, there arises a new problem not less severe. Recall that the network variable 
N’s values should describe the possible states of the represented mechanism. When forc-
ing B to take a certain value b by means of an intervention, we do not know in which state 
the mechanism is. So the causal influences do(b) would have on C in the BNs which de-
scribe the mechanism’s states (i.e., N’s possible values) have to be weighted by the prob-
abilities of these possible states. Because of this, the d-connecting path B<--N-->C is re-
quired to be preserved in fig. 4. But now note that one would expect that observing the 
values of additional micro variables will give us additional information about the proba-
bilities of the possible states of the mechanism represented by the network variable N. If in 
state n1, for example, a certain A-value a is highly probable, but a is quite improbable in all 
other states ni, then learning that A = a should increase the probability of N = n1. In other 
words, P(n1|do(b),a) > P(n1|do(b)) should hold. But according to the modified method 
for computing post-intervention distributions introduced above, P(n1|do(b),a) will equal 
P(n1|do(b)) simply because P(n1|do(b),a) = P(n1|b,a), P(n1|do(b)) = P(n1|b), and A and 
N are d-separated by B in the graph in fig. 4, which implies Indep(N,A|B).

A similar problem arises, again, w.r.t. the mechanism’s input variable I. We would ex-
pect that learning that the input is I = i gives us additional information about the prob-
abilities of the possible states of the mechanism represented by N. Thus, we would expect 
P(n|do(b),i) ≠ P(n|do(b)) to hold for some N-, B-, and I-values n, b, and i, respectively, but 
the formalism implies P(n|do(b),i) = P(n|do(b)).

Summarizing, there seems to be no way out of the problem presented. When one does 
not delete the arrows I→N, N-->A, and N-->D from our original BN, then some interven-
tions on B will influence some non-effects of B as well as the mechanism’s input I, while 
deleting I→N, N-->A, and N-->D will lead to the bizarre consequence that observing the 
values of additional micro variables or the value of the input variable I will not give us addi-
tional information about the probabilities of the mechanism’s possible states.

These findings can be generalized: It seems to be the case that the RBN approach can-
not be used for computing post-intervention distributions in case of faithful mechanisms. 
But also its fruitfulness for getting predictions about what would happen under interven-
tions in case of non-faithful mechanisms is more than questionable. First of all, violations 
of faithfulness arise only in case of parameter fine-tunings, and at least fine-tunings that 
produce unfaithful independencies due to cancelling paths, additional cancelling causes, 
or intransitive d-connections are highly improbable (cf. Spirtes et al. 2000, 41f; Steel 2006, 
313). Thus, it can be expected that many mechanisms will be faithful. But even in case we 
are confronted with a non-faithful mechanism, we will get the right predictions only under 
very specific additional assumptions. The model’s parameters must be fine-tuned in such a 
way that every arrow of one of the paths I→N-->B, A<--N-->B, and B<--N-->D produces 
some dependence between its head and its tail, but also in such a way that the three paths 
do not produce dependence between the variables at their end points. The latter is required 
to avoid the first problem discussed, i.e., that some interventions on B lead to a probabil-
ity change of certain I-, A-, or D-values. The former is required to avoid the second prob-
lem presented above. It is required to guarantee that intervening on B does not screen N off 
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from its input I as well as from A and D, and thus, that observing the values of additional 
micro variables can provide additional information about the probabilities of the mecha-
nism’s possible states. Summarizing, to avoid the problems already discussed by giving up 
faithfulness requires a very specific parameter fine-tuning. Hence, non-faithful mechanisms 
which can avoid the problems discussed can be expected to be even rarer than just non-
faithful mechanisms.

Finally, a supporter of the RBN approach for modeling mechanisms may respond to 
my critique by claiming that the formalism was never intended to compute all kinds of 
post-intervention distributions. (Note that Casini et al. 2011 are not clear about which 
kinds of post-intervention distributions their approach should allow to compute.) She may 
insist that it would suffice that it is able to correctly compute the probabilities of effects of 
mechanisms at the macro level when manipulating the mechanism’s micro parts, i.e., the ef-
fects of network variables when intervening on some of these network variables’ inferiors. 
But even if one would be happy with a method allowing only for computing the effects of 
manipulations on a mechanism’s parts on the mechanism’s output at the macro level, there 
is still a problem with Casini et al.’s proposal. This problem arises in case there are common 
causes of network variables and some of their effects.

Let me illustrate this new problem, again, by means of our abstract example and as-
sume that there is a common cause E of N and O, i.e., that the RBN’s top level structure 
is the concatenation of I→N→O and N←E→O. When intervening on B and not delet-
ing the arrow N-->B (which is what Casini et al. 2011 originally suggested), then there 
are actually two active paths connecting B and O, viz. B<--N→O and B<--N←E→O. 
Because of this we would not get the post-intervention probability P(o|do(b)) to be ex-
pected. What we would expect when intervening on some micro parts of the mechanism 
represented by N is that do(b) directly influences the probability distribution of N, which, 
in turn, only influences effects of N at the macro level. Intervening on some of the mecha-
nism’s micro parts should not lead to a probability change of a cause (such as I or E) of the 
network variable N. So we would expect that probabilistic influence from do(b) to O is 
only propagated over the path B<--N→O, but not over the path B<--N←E→O featuring 
a common cause.8 A supporter of the RBN approach for modeling mechanisms could sug-
gest to also delete the arrow E→N when going from the original graph to the truncated 
graph used for computing post-intervention probabilities. But this move, as we already 
saw before, leads straightforward into new problems. In particular, learning about E’s ac-
tual value would not give us any additional information about the state of the mechanism 

8 A supporter of the RBN approach could still claim that one gets the correct post-intervention proba-
bilities when fixing the common cause E of N and O. I am indebted to an anonymous reviewer for this 
point. I agree that I am not able to show that post-intervention probabilities P(o|do(b),e) behave weird 
within the RBN approach. However, my argumentation still applies to post-intervention probabilities 
P(o|do(b)), which in many real life cases will be more important than probabilities P(o|do(b),e). As-
sume, for example, a surgeon can only manipulate one of the micro variables, say B, directly. She can-
not directly control one of the macro variables. O stands for whether a patient survives or not. In that 
case the surgeon and the patient are interested in the probabilities P(o|do(b)), and not in P(o|do(b),e). 
Note that in many real life cases there will be much more common causes E1,…,En. If only one of these 
Ei cannot be controlled, then there will be a path B<--N←Ei→O to which my argumentation above 
applies. 
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represented by N when manipulating this mechanism’s micro variable B. But, again, this 
would be strange. Since N’s values represent the possible states the modeled mechanism 
can be in, conditionalizing on E should give us some hint on the mechanism’s state when 
intervening on B.

5. Conclusion

Casini et al.’s (2011) RBN approach for modeling mechanisms, which is also endorsed 
by Clarke et al. (2014), should provide predictions about the effects of manipulations on 
a mechanism’s parts across levels. Such manipulations are typically represented in causal 
models either by intervention variables or by deleting arrows and fixing the values of the 
manipulated variables. In (Gebharter 2014) I have shown that the former is not possible 
in RBN models of mechanisms. In this paper I showed that also representing interventions 
as a certain kind of arrow breaking interventions is highly questionable in RBN models of 
mechanisms. The method Casini et al. suggest for computing post-intervention distribu-
tions can be expected to regularly produce absurd consequences. Correct post-intervention 
distributions can only be computed in case the mechanism modeled is non-faithful and sat-
isfies very specific additional conditions. Since such mechanisms can be expected to be rare, 
the RBN approach seems to be more or less useless for answering questions concerning the 
effects of manipulation and control across the levels of mechanisms, which was one of the 
main motivations for developing the approach in the first place.

The main result of the paper is a negative one. It leaves the question of how to model 
mechanisms in such a way that all kinds of post-intervention distributions can be com-
puted unanswered. For an alternative approach that also allows to adequately compute 
post-intervention distributions, see (Gebharter 2014) and (Gebharter & Schurz forth-
coming). For how mechanism discovery might work in such an approach, see (Murray-
 Watters & G lymour 2015). For recent objections to this approach, see (Casini forth-
coming).
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